题目内容

9.已知函数f(x)=(x2-a+1)ex,g(x)=(x2-2)ex+2
(1)若曲线y=f(x)在(1,f(1))处的切线为l:y=2ex+b,求a,b的值;
(2)若函数f(x)在[-3,1]上是单调函数,求实数a的取值范围.

分析 (1)根据导数的几何意义,即可求出切线的斜率,故求出a,b的值;
(2)需要分两种情况讨论,单调递增和单调递减,采用分离参数法,求出参数的最值即可.

解答 解:(1)f′(x)=(x2+2x-a+1)ex  
由题意:f′(1)=(4-a)e=2e,
解得:a=2,
∴f(x)=(x2-1)ex    
又f(1)=0=2e+b,
∴b=-2e;   
(2)若函数f(x)在[-3,1]上是单调递增函数,
则f′(x)=(x2+2x-a+1)ex≥0在[-3,1]上恒成立,
即x2+2x-a+1≥0,
∴a≤x2+2x+1=(x+1)2在[-3,1]上恒成立,
∴a≤0,
若函数f(x)在[-3,1]上是单调递减函数,
则f′(x)=(x2+2x-a+1)ex≤0在[-3,1]上恒成立,
即x2+2x-a+1≤0,
a≥x2+2x+1=(x+1)2在[-3,1]上恒成立,
∴a≥4,
综上,若函数f(x)在[-3,1]上是单调函数,
则a的取值范围是(-∞,0]∪[4,+∞).

点评 本题考查了利用导数研究曲线的切线,同时考查了利用导数研究函数的单调性,考查运算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网