题目内容

1.已知△ABC的内角A、B、C成等差数列,若不等式$λ+\frac{4\sqrt{3π}}{3}<\frac{1}{A}+\frac{1}{C}-{A}^{2}-{C}^{2}$对任意A、C都成立,则实数λ的取值范围是(  )
A.(-$∞,-\frac{4{π}^{2}}{9}$)B.($-∞,\frac{4{π}^{2}}{9}-\frac{4\sqrt{3π}}{3}$)
C.($-∞,\frac{6}{π}-\frac{2{π}^{2}}{9}-\frac{4\sqrt{3π}}{3}$)D.(-∞,$\frac{6}{π}-\frac{2{π}^{2}}{9}$)

分析 由内角A、B、C成等差数列,可解得:A+C=$\frac{2π}{3}$,原式整理可得λ<$\frac{A+C}{AC}+2AC-(A+C)^{2}$-$\frac{4\sqrt{3π}}{3}$,利用基本不等式可解得λ的范围.

解答 解:∵△ABC的内角A、B、C成等差数列,
∴2B=A+C,又A+B+C=π,可解得:B=$\frac{π}{3}$,A+C=$\frac{2π}{3}$.
∴$λ+\frac{4\sqrt{3π}}{3}<\frac{1}{A}+\frac{1}{C}-{A}^{2}-{C}^{2}$
⇒λ<$\frac{A+C}{AC}-({A}^{2}+{C}^{2})$-$\frac{4\sqrt{3π}}{3}$,
⇒λ<$\frac{A+C}{AC}+2AC-(A+C)^{2}$-$\frac{4\sqrt{3π}}{3}$,
⇒λ<2$\sqrt{2(A+C)}$-(A+C)2-$\frac{4\sqrt{3π}}{3}$,
⇒λ<2$\sqrt{\frac{4π}{3}}$-$\frac{4{π}^{2}}{9}$-$\frac{4\sqrt{3π}}{3}$,
⇒λ<-$\frac{4{π}^{2}}{9}$.
故选:A.

点评 本题主要考查了等差数列的性质,基本不等式的解法,三角形内角和定理,属于基本知识的考查.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网