题目内容
(本小题满分15分)
(文)已知直线与曲线相切,分别求的方程,使之满足:
(1)经过点;(2)经过点;(3)平行于直线;
(理)如图,平面平面,四边形与都是直角梯形,
,,分别为的中点
(Ⅰ)证明:四边形是平行四边形;
(Ⅱ)四点是否共面?为什么?
(Ⅲ)设,证明:平面平面;
【解1】:(Ⅰ)由题意知,
所以
又,故
所以四边形是平行四边形。
(Ⅱ)四点共面。理由如下:
由,是的中点知,,所以
由(Ⅰ)知,所以,故共面。又点在直线上
所以四点共面。
(Ⅲ)连结,由,及知是正方形
故。由题设知两两垂直,故平面,
因此是在平面内的射影,根据三垂线定理,
又,所以平面
由(Ⅰ)知,所以平面。
由(Ⅱ)知平面,故平面,得平面平面
【解2】:由平面平面,,得平面,
以为坐标原点,射线为轴正半轴,建立如图所示的直角坐标系
(Ⅰ)设,则由题设得
所以
于是
又点不在直线上
所以四边形是平行四边形。
(Ⅱ)四点共面。理由如下:
由题设知,所以
又,故四点共面。
(Ⅲ)由得,所以
又,因此
即
又,所以平面
故由平面,得平面平面
练习册系列答案
相关题目