题目内容
【题目】已知函数,函数是区间上的减函数.
(1)求的最大值;
(2)若在上恒成立,求的取值范围;
(3)讨论关于的方程的根的个数.
【答案】(1) (2) (3)见解析
【解析】
【试题分析】(1)运用导数与函数的单调性之间的关系,将问题单调性问题进行等价转化为不等式恒成立问题进行求解;(2)先求函数再构造函数进行求解;(3)先构造函数,再将问题 转化为求函数的最大值与函数的最小值,借助题设条件建立不等式进行分析求解:
解:
(1)
又 在 上单调递减 在恒成立
故 的最大值为
(2)
只需 在上恒成立,
令 ,则需
又恒成立 所以
(3) 令 ,
所以当 时, , 单调递增; 当时,,即单调递减.所以
又
当,即时,方程无解;当,即时,方程有一个解;当,即时,方程有两个解.
【题目】某学校高三年级学生某次身体素质体能测试的原始成绩采用百分制,已知所有这些学生的原始成绩均分布在内,发布成绩使用等级制,各等级划分标准见下表.
百分制 | 85分及以上 | 70分到84分 | 60分到69分 | 60分以下 |
等级 | A | B | C | D |
规定:A,B,C三级为合格等级,D为不合格等级为了解该校高三年级学生身体素质情况,从中抽取了n名学生的原始成绩作为样本进行统计.
按照,,,,的分组作出频率分布直方图如图1所示,样本中分数在80分及以上的所有数据的茎叶图如图2所示
求n和频率分布直方图中的x,y的值,并估计该校高一年级学生成绩是合格等级的概率;
根据频率分布直方图,求成绩的中位数精确到;
在选取的样本中,从A,D两个等级的学生中随机抽取2名学生进行调研,求至少有一名学生是A等级的概率.
【题目】某公司共有职工1500人,其中男职工1050人,女职工450人.为调查该公司职工每周平均上网的时间,采用分层抽样的方法,收集了300名职工每周平均上网时间的样本数据(单位:小时)
男职工 | 女职工 | 总计 | |
每周平均上网时间不超过4个小时 | |||
每周平均上网时间超过4个小时 | 70 | ||
总计 | 300 |
(Ⅰ)应收集多少名女职工样本数据?
(Ⅱ)根据这300个样本数据,得到职工每周平均上网时间的频率分布直方图(如图所示),其中样本数据分组区间为:,,,,,.试估计该公司职工每周平均上网时间超过4小时的概率是多少?
(Ⅲ)在样本数据中,有70名女职工的每周平均上网时间超过4个小时.请将每周平均上网时间与性别的列联表补充完整,并判断是否有95%的把握认为“该公司职工的每周平均上网时间与性别有关”