题目内容
【题目】已知为坐标原点,椭圆:的左、右焦点分别为,,右顶点为,上顶点为,若,,成等比数列,椭圆上的点到焦点的距离的最大值为.
求椭圆的标准方程;
过该椭圆的右焦点作两条互相垂直的弦与,求的取值范围.
【答案】(1)(2)
【解析】
根据,,成等比数列,椭圆上的点到焦点的距离的最大值为.列出关于 、 、的方程组,求出 、的值,即可得出椭圆的方程;对直线和分两种情况讨论:一种是两条直线与坐标轴垂直,可求出两条弦长度之和;二是当两条直线斜率都存在时,设直线的方程为,将直线方程与椭圆方程联立,列出韦达定理,利用弦长公式可计算出的长度的表达式,然后利用相应的代换可求出的长度表达式,将两线段长度表达式相加,利用函数思想可求出两条弦长的取值范围最后将两种情况的取值范围进行合并即可得出答案.
易知,得,则,
而,又,得,,
因此,椭圆C的标准方程为;
当两条直线中有一条斜率为0时,另一条直线的斜率不存在,由题意易得;
当两条直线斜率都存在且不为0时,由知,
设、,直线MN的方程为,则直线PQ的方程为,
将直线方程代入椭圆方程并整理得:,
显然,,,
,同理得,
所以,,
令,则,,设,
,所以,,所以,,则.
综合可知,的取值范围是.
【题目】为了调查微信用户每天使用微信的时间,某经销化妆品的店家在一广场随机采访男性、女性用户各50名,将男性、女性平均每天使用微信的时间(单位:)分成5组:,,,,分别加以统计,得到如图所示的频率分布直方图.
(1)根据男性的频率分布直方图,求的值;
(2)①若每天玩微信超过的用户称为“微信控”,否则称为“非微信控”,根据男性,女性频率分布直方图完成下面列联表(不用写计算过程)
微信控 | 非微信 | 总计 | |
男性 | |||
女性 | |||
总计 | 100 |
②判断是否有90%的把握认为“微信控”与性别有关?说明你的理由.(下面独立性检验的临界值表供参考)
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
参考公式:,其中.