题目内容
2.在正项等比数列{an}中,lga3+lga6+lga9=6,则a1a11的值是10000.分析 由题意可得可得lg(a3a6a9)=6,从而得a63=106,求得 a6 的值,再由a1a11=a62,运算求得结果.
解答 解:∵lga3+lga6+lga9=6,∴lg(a3a6a9)=6,∴a63=106,解得a6=102.
∴a1a11=a62=104=10000.
故答案为:10000.
点评 本题主要考查等比数列的性质,对数的运算性质应用,属于中档题.
练习册系列答案
相关题目
12.若函数f(x)=x3+x2-2x-2的一个正数零点附近的函数值用二分法计算,其参考数据如下:
那么方程x3+x2-2x-2=0的一个近似根(精确度为0.05)可以是( )
f (1)=-2 | f (1.5)=0.625 | f (1.25)=-0.984 |
f (1.375)=-0.260 | f (1.4375)=0.162 | f (1.40625)=-0.054 |
A. | 1.25 | B. | 1.375 | C. | 1.42 | D. | 1.5 |
13.由动点 P向圆x2+y2=1引两条切线,切点分别为 A、B,若$\overrightarrow{{P}{A}}$•$\overrightarrow{{P}{B}}$=$\frac{3}{2}$,则动点 P的轨迹方程为( )
A. | x2+y2=2 | B. | x2+y2=$\frac{9}{4}$ | C. | x2+y2=4 | D. | x2+y2=9 |
14.已知函数f(x)=$\left\{\begin{array}{l}a•{2^x}(x≤0)\\{log_2}x(x>0)\end{array}$,若关于x的方程f[f(x)]=0有且只有一个实数根,则实数a的取值范围是( )
A. | (-∞,0) | B. | (-∞,0)∪(0,1) | C. | (0,1) | D. | (0,1)∪(1,+∞) |
11.已知函数f(x)=(m-2)x2+mx+(2m+1)的两个零点分别在区间(-1,0)和区间(1,2)内,则实数m的取值范围是( )
A. | [$\frac{1}{4}$,$\frac{1}{2}$] | B. | ($\frac{1}{4}$,$\frac{1}{2}$) | C. | (-$\frac{1}{2}$,$\frac{1}{4}$) | D. | ($\frac{1}{4}$,$\frac{1}{2}$) |
12.把函数y=sin(2x+$\frac{π}{6}$)的图象向右平移$\frac{π}{6}$个单位得到函数f(x)的图象,则下列说法正确的是( )
A. | f(x)的图象关于y轴对称 | B. | f(x)的图象关于原点对称 | ||
C. | f(x)的图象关于直线x=$\frac{π}{3}$对称 | D. | f(x)的图象关于点($\frac{π}{3}$,0)对称 |