题目内容
14.如图,AB是半径为2的圆O的弦,CD是圆O的切线,C是切点,D是OB的延长线与CD的交点,CD∥AB,若CD=$\sqrt{5}$,则AC等于( )A. | $\frac{\sqrt{6}}{3}$ | B. | $\frac{2\sqrt{6}}{3}$ | C. | 1 | D. | 2 |
分析 连接OC,则OC⊥CD,利用CD∥AB,可得OC⊥AB,AC=BC,利用余弦定理求出BC,即可得出结论.
解答 解:连接OC,则OC⊥CD,
∵CD∥AB,∴OC⊥AB,
∴AC=BC,
△OCD中,OC=2,CD=$\sqrt{5}$,∴OD=3,
∴BD=1,cos∠D=$\frac{\sqrt{5}}{3}$,
∴BC=$\sqrt{1+5-2×1×\sqrt{5}×\frac{\sqrt{5}}{3}}$=$\frac{2\sqrt{6}}{3}$,
∴AC=$\frac{2\sqrt{6}}{3}$,
故选:B.
点评 本题考查圆的切线的性质,考查余弦定理,考查学生的计算能力,属于中档题.
练习册系列答案
相关题目
4.已知sin(x+$\frac{π}{6}$)=$\frac{1}{4}$,则sin($\frac{5π}{6}$-x)+sin2($\frac{π}{3}$-x)的值为( )
A. | -$\frac{3}{16}$ | B. | $\frac{5}{16}$ | C. | $\frac{15}{16}$ | D. | $\frac{19}{16}$ |
2.在△ABC中,内角A、B、C的对边分别是a,b,c,若sin2A+sin2B-sin2C=0,a2+c2-b2-ac=0,c=2,则a=( )
A. | 1 | B. | $\sqrt{3}$ | C. | $\frac{1}{2}$ | D. | $\frac{\sqrt{3}}{2}$ |
1.sin80°cos20°-cos80°sin20°的值为( )
A. | $\frac{1}{2}$ | B. | $\frac{\sqrt{3}}{2}$ | C. | -$\frac{1}{2}$ | D. | -$\frac{\sqrt{3}}{2}$ |
2.已知动点P与平面上两定点A(-$\sqrt{2}$,0),B($\sqrt{2}$,0)连线的斜率的积为定值-$\frac{1}{2}$.则动点P的轨迹方程C( )
A. | $\frac{{x}^{2}}{5}$$+\frac{{y}^{2}}{9}$=1 | B. | $\frac{{x}^{2}}{2}$+y2=1 | C. | $\frac{{x}^{2}}{16}$$+\frac{{y}^{2}}{16}$=1 | D. | $\frac{{x}^{2}}{16}$$+\frac{{y}^{2}}{9}$=1 |