题目内容
4.已知复数z=3-2i-$\frac{5i}{2-i}$,则复数z对应复平面上的点Z位于( )A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
分析 利用复数代数形式的乘除运算化简,求出z的坐标得答案.
解答 解:∵z=3-2i-$\frac{5i}{2-i}$=$3-2i-\frac{5i(2+i)}{(2-i)(2+i)}=3-2i-\frac{-5+10i}{5}$=3-2i+1-2i=4-4i,
∴复数z对应复平面上的点Z的坐标为(4,-4),位于第四象限.
故选:D.
点评 本题考查了复数代数形式的乘除运算,考查了复数的代数表示法及其几何意义,是基础题.
练习册系列答案
相关题目
14.已知函数f(x)=$\left\{\begin{array}{l}a•{2^x}(x≤0)\\{log_2}x(x>0)\end{array}$,若关于x的方程f[f(x)]=0有且只有一个实数根,则实数a的取值范围是( )
A. | (-∞,0) | B. | (-∞,0)∪(0,1) | C. | (0,1) | D. | (0,1)∪(1,+∞) |
12.把函数y=sin(2x+$\frac{π}{6}$)的图象向右平移$\frac{π}{6}$个单位得到函数f(x)的图象,则下列说法正确的是( )
A. | f(x)的图象关于y轴对称 | B. | f(x)的图象关于原点对称 | ||
C. | f(x)的图象关于直线x=$\frac{π}{3}$对称 | D. | f(x)的图象关于点($\frac{π}{3}$,0)对称 |
9.已知双曲线C与椭圆$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{5}$=1有相同的焦点F1、F2,点P为双曲线C与椭圆的一个交点,且满足|PF1|=2|PF2|,则双曲线C的渐近线方程是( )
A. | y=±$\sqrt{3}$x | B. | y=±$\sqrt{2}$x | C. | y=±x | D. | y=±$\frac{\sqrt{3}}{2}$x |