题目内容

【题目】已知椭圆的离心率为在椭圆上,直线过椭圆的右焦点且与椭圆相交于两点.

1的方程;

2轴上是否存在定点使得为定值?若存在,求出定点的坐标,若不存在,说明理由.

【答案】(1)(2)存在定点,使得为定值

【解析】试题分析:1由题意的离心率公式求得代入椭圆方程即可求得从而可得椭圆方程;(2)在轴上假设存在定点,使得为定值若直线的斜率存在,设的科率为代入椭圆方程运用韦达定理和向量数量积的坐标表示,结合恒成立思想即可得到定点和定值;检验直线的斜率不存在时也成立.

试题解析:(1)由 ,解出 可得椭圆的方程为.

2)由直线过椭圆右焦点

当直线不与轴重合时,可设

代入椭圆方程,并整理得

,则

,则

为定值,

,解得

故存在定点,使得为定值.

【方法点晴】本题主要考查待定系数求椭圆方程以及直线与椭圆的位置关系和数量积公式,属于难题.用待定系数法求椭圆方程的一般步骤;①作判断:根据条件判断椭圆的焦点在轴上,还是在轴上,还是两个坐标轴都有可能;②设方程:根据上述判断设方程 ;③找关系:根据已知条件,建立关于的方程组;④得方程:解方程组,将解代入所设方程,即为所求.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网