题目内容
【题目】喜羊羊家族的四位成员与灰太狼、红太狼进行谈判,通过谈判他们握手言和,准备一起照合影像(排成一排).
(1)要求喜羊羊家族的四位成员必须相邻,有多少种排法?
(2)要求灰太狼、红太狼不相邻,有多少种排法?
(3)记灰太狼和红太狼之间的喜羊羊家族的成员个数为,求的概率分布表和数学期望.
【答案】(1)144.(2)480.(3)见解析.
【解析】
(1)把喜羊羊家族的四位成员看成一个元素,利用捆绑法求解;
(2)把喜羊羊家族的四位成员先排好,利用插空法求解;
(3)先求的所有取值,再求解每个取值的概率,可得分布表和数学期望.
(1)把喜羊羊家族的四位成员看成一个元素,排法为.又因为四位成员交换顺序产生不同排列,所以共有种排法.
(2)第一步,将喜羊羊家族的四位成员排好,有种排法;第二步,让灰太狼、红太狼插入四人形成的空(包括两端),有种排法,共有种排法.
(3),,
,,,
的概率分布表如下:
0 | 1 | 2 | 3 | 4 | |
数学期望为:
【题目】某公司对员工实行新的临时事假制度:“每位员工每月在正常的工作时间临时有事,可请假至多三次,每次至多一小时”,现对该制度实施以来名员工请假的次数进行调查统计,结果如下表所示:
请假次数 | ||||
人数 |
根据上表信息解答以下问题:
(1)从该公司任选两名员工,求这两人请假次数之和恰为的概率;
(2)从该公司任选两名员工,用表示这两人请假次数之差的绝对值,求随机变量的分布列及数学期望.
【题目】已知一组数据:
125 121 123 125 127 129 125 128 130
129 126 124 125 127 126 122 124 125
126 128
(1)填写下面的频率分布表:
分组 | 频数累计 | 频数 | 频率 |
合计 |
(2)作出频率分布直方图.
(3)根据频率分布直方图或频率分布表求这组数据的众数、中位数和平均数.