题目内容
【题目】已知数列{an}的前n项和为Sn,a1=1,an+1=2Sn+1(n∈N*),等差数列{bn}中,bn>0(n∈N*),且b1+b2+b3=15,又a1+b1、a2+b2、a3+b3成等比数列.
(1)求数列{an}、{bn}的通项公式;
(2)求数列{an·bn}的前n项和Tn.
【答案】(1)an=3n-1(n∈N*),bn=2n+1(n∈N*).
(2)Tn=n·3n.
【解析】试题分析:(1)先根据和项与通项关系得项的递推关系式:an+1=3an,再根据等比数列定义以及通项公式求数列{an}的通项公式;利用待定系数法求等差数列{bn}中首项与公差,再根据等差数列通项公式得{bn}的通项公式;(2)利用错位相减法求数列{an·bn}的前n项和Tn. 利用错位相减法求和时,注意相减时项的符号变化,中间部分利用等比数列求和时注意项数,最后要除以
试题解析:解 (1)∵a1=1,an+1=2Sn+1(n∈N*),
∴an=2Sn-1+1(n∈N*,n>1),
∴an+1-an=2(Sn-Sn-1),
即an+1-an=2an,∴an+1=3an(n∈N*,n>1).
而a2=2a1+1=3,∴a2=3a1.
∴数列{an}是以1为首项,3为公比的等比数列,
∴an=3n-1(n∈N*).
∴a1=1,a2=3,a3=9,
在等差数列{bn}中,∵b1+b2+b3=15,∴b2=5.
又∵a1+b1、a2+b2、a3+b3成等比数列,设等差数列{bn}的公差为d,则有(a1+b1)(a3+b3)=(a2+b2)2.
∴(1+5-d)(9+5+d)=64,解得d=-10或d=2,
∵bn>0(n∈N*),∴舍去d=-10,取d=2,
∴b1=3,∴bn=2n+1(n∈N*).
(2)由(1)知Tn=3×1+5×3+7×32+…+(2n-1)·3n-2+(2n+1)3n-1,①
∴3Tn=3×3+5×32+7×33+…+(2n-1)3n-1+(2n+1)3n,②
∴①-②得-2Tn=3×1+2×3+2×32+2×33+…+2×3n-1-(2n+1)3n=3+2(3+32+33+…+3n-1)-(2n+1)3n=3+2×-(2n+1)3n=3n-(2n+1)3n
=-2n·3n.∴Tn=n·3n.
【题目】静宁县是甘肃苹果栽培第一大县,中国著名优质苹果基地和重要苹果出口基地.静宁县海拔高、光照充足、昼夜温差大、环境无污染,适合种植苹果.“静宁苹果”以色泽鲜艳、质细汁多,酸甜适度,口感脆甜、货架期长、极耐储藏和长途运输而著名.为检测一批静宁苹果,随机抽取50个,其重量(单位:克)的频数分布表如下:
分组(重量) | [80,85) | [85,90) | [90,95) | [95,100) |
频数(个) | 5 | 10 | 20 | 15 |
(1)根据频数分布表计算苹果的重量在[90,95)的频率;
(2)用分层抽样的方法从重量在[80,85)和[95,100)的苹果中共抽取4个,其中重量在[80,85)的有几个?
(3)在(2)中抽出的4个苹果中,任取2个,求重量在[80,85)和[95,100)中各有1个的概率.