题目内容
(本小题满分12分)
如图,直二面角D—AB—E中,四边形ABCD是边长为2的正方形,AE=EB,F为CE上的点,且BF⊥平面ACE.
(Ⅰ)求证AE⊥平面BCE;
(Ⅱ)求二面角B—AC—E的大小;
(I)
(II)连结AC、BD交于G,连结FG,
∵ABCD为正方形,∴BD⊥AC,∵BF⊥平面ACE,∴FG⊥AC,∠FGB为二面角B-AC-E的平面角,由(I)可知,AE⊥平面BCE,∴AE⊥EB,又AE=EB,AB=2,AE=BE=,
在直角三角形BCE中,CE=
在正方形中,BG=,在直角三角形BFG中,
∴二面角B-AC-E为
(III)由(II)可知,在正方形ABCD中,BG=DG,D到平面ACB的距离等于B到平面ACE的距离,BF⊥平面ACE,线段BF的长度就是点B到平面ACE的距离,即为D到平面ACE的距离所以D到平面的距离为
另法:过点E作交AB于点O. OE=1.
∵二面角D—AB—E为直二面角,∴EO⊥平面ABCD.
设D到平面ACE的距离为h,
平面BCE,
∴点D到平面ACE的距离为
解法二:
(Ⅰ)同解法一.
(Ⅱ)以线段AB的中点为原点O,OE所在直线为x轴,AB所在直线为y轴,过O点平行于AD的直线为z轴,建立空间直角坐标系O—xyz,如图.
面BCE,BE面BCE,,
在的中点,
设平面AEC的一个法向量为,
则
解得
令得是平面AEC的一个法向量.
又平面BAC的一个法向量为,
∴二面角B—AC—E的大小为
(III)∵AD//z轴,AD=2,∴,
∴点D到平面ACE的距离
解析
练习册系列答案
相关题目
如图,三棱柱的各棱长均为2,侧棱与底面所成的角为,为锐角,且侧面⊥底面,给出下列四个结论:
①;
②;
③直线与平面所成的角为;
④.
其中正确的结论是( )
A.①③ | B.②④ | C.①③④ | D.①②③④ |