题目内容
、如图,ABCD是正方形,O是正方形的中心,PO底面ABCD,E是PC的中点。求证:(1)PA∥平面BDE (2)平面PAC平面BDE
见解析。
解析
(本小题12分)如图,已知三棱锥A-BPC中,AP⊥PC,AC⊥BC,M为AB中点,D为PB中点,且△PMB为正三角形.(Ⅰ)求证:DM∥平面APC;(II)求证:平面ABC⊥平面APC.
(13分) 如图,直三棱柱中, ,,.(Ⅰ)证明:;(Ⅱ)求二面角的正切值.
(本题满分14分)如图,四棱锥的底面为矩形,且,,,(Ⅰ)平面与平面是否垂直?并说明理由;(Ⅱ)求直线与平面所成角的正弦值.
(本小题满分12分)如图,在四棱锥P-ABCD中,PD⊥平面ABCD,PD=DC=BC=1,AB=2,AB∥DC,∠BCD=90°.(1)求证:PC⊥BC;(2)求点A到平面PBC的距离.
(本小题12分)如图,在三棱锥中,为的中点,平面,垂足落在线段上,已知(1)证明:;(2)在线段上是否存在点,使得二面角为直二面角?若存在,求出的长;若不存在,请说明理由.
(本小题共l5分) 如图,在直三棱柱ABC-A1B1C1中.∠ BAC=90°,AB=AC=AA1 =1.D是棱CC1上的一点,P是AD的延长线与A1C1的延长线的交点,且PB1∥平面BDA1.(I)求证:CD=C1D:(II)求二面角A-A1D-B的平面角的余弦值; (Ⅲ)求点C到平面B1DP的距离.
(本小题满分12分)如图,直二面角D—AB—E中,四边形ABCD是边长为2的正方形,AE=EB,F为CE上的点,且BF⊥平面ACE.(Ⅰ)求证AE⊥平面BCE;(Ⅱ)求二面角B—AC—E的大小;
如图,圆柱的高为2,底面半径为3,AE、DF是圆柱的两条母线,B、C是下底面圆周上的两点,已知四边形ABCD是正方形.(1)求证:;(2)求正方形ABCD的边长;(3)求直线与平面所成角的正弦值.