题目内容

【题目】在△ABC中,内角A,B,C的对边分别为a,b,c,已知sin2
(Ⅰ) 求角A的大小;
(Ⅱ) 若b+c=2,求a的取值范围.

【答案】解:(Ⅰ)由已知得 , 化简得
整理得 ,即
由于0<B+C<π,则
所以
(Ⅱ)根据余弦定理,得
=b2+c2+bc
=b2+(2﹣b)2+b(2﹣b)
=b2﹣2b+4
=(b﹣1)2+3.(10分)
又由b+c=2,知0<b<2,可得3≤a2<4,
所以a的取值范围是
【解析】(Ⅰ)由已知利用三角函数恒等变换的应用化简可得 ,由0<B+C<π,可求 ,进而可求A的值.(Ⅱ)根据余弦定理,得a2=(b﹣1)2+3,又b+c=2,可求范围0<b<2,进而可求a的取值范围.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网