题目内容
【题目】已知函数.
(1)求函数的单调区间;
(2)已知点和函数图像上动点,对任意,直线倾斜角都是钝角,求的取值范围.
【答案】(1)见解析;(2).
【解析】试题分析:(1)先求函数的定义域,然后求导,利用导数大于0或导数小于0,得到关于x的不等式,解之即可;注意解不等式时要结合对应的函数图象来解;
(2)因为对任意m∈[1,e],直线PM倾斜角都是钝角,所以问题转化为导数值小于0恒成立的问题,对于导函数小于0在区间[1,e]上恒成立,则问题转化为函数的最值问题,即函数f′(x)<0恒成立,通过化简最终转化为f(m)<1在区间[1,e]上恒成立,再通过研究f(x)在[1,e]上的单调性求最值,结合(Ⅰ)的结果即可解决问题.注意分类讨论的标准的确定.
试题解析:
(1)函数的定义域为, ,
当时, ,故在上单调递减;
当时, ,故在上单调递减;
当时, ,解得故在上单调递减,在上单调递增.
(2)因为对任意的,直线倾斜角都是钝角,即对任意的, ,即,即.
因为,令,
(i)当时,由(1)知, 在上单调递减,则由,故,此时满足.
(ii)当时,令,得,当时,即,函数在上单调递增,故的最大值为,解得与矛盾.
当时,即,函数在上单调递减,故的最大值为,得,此时.
当时,即,函数在上单调递减,在上单调递增,故在的最大值为或,
所以,即,故,综上, 的取值范围为.
【题目】(本题满分10分)已知等差数列{an}满足a1+a2=10,a4-a3=2.
(1)求{an}的通项公式.
(2)设等比数列{bn}满足b2=a3,b3=a7.问:b6与数列{an}的第几项相等?
【题目】已知抛物线,直线倾斜角是且过抛物线的焦点,直线被抛物线截得的线段长是16,双曲线: 的一个焦点在抛物线的准线上,则直线与轴的交点到双曲线的一条渐近线的距离是( )
A. 2 B. C. D. 1
【题目】国家为了鼓励节约用水,实行阶梯用水收费制度,价格参照表如表:
用水量(吨) | 单价(元/吨) | 注 |
0~20(含) | 2.5 | |
20~35(含) | 3 | 超过20吨不超过35吨的部分按3元/吨收费 |
35以上 | 4 | 超过35吨的部分按4元/吨收费 |
(1)若小明家10月份用水量为30吨,则应缴多少水费?
(2)若小明家10月份缴水费99元,则小明家10月份用水多少吨?
(3)写出水费y与用水量x之间的函数关系式,并画出函数的图象.