题目内容
【题目】已知为椭圆()的一个焦点,过原点的直线与椭圆交于、两点,且,△的面积为。
(1)求椭圆的离心率;
(2)若,过点且不与坐标轴垂直的直线交椭圆于、两点,线段的垂直平分线与轴交于点,求点横坐标的取值范围。
【答案】(1);(2)
【解析】
(1)可通过椭圆上的点到两焦点的距离之和为、、三式联立求得,再与解得椭圆离心率。
( 2)首先可以通过第一小题得出椭圆方程,再设出直线的方程,与椭圆联立解得的值,再设出线段中点坐标为,最后求得点横坐标的取值范围。
(1)设椭圆的焦半距为,左焦点为,因为所以
由椭圆的对称性可知四边形为矩形, ,
所以 ,
得,由消去上式的得,
即,椭圆C的离心率 ,
(2)因为的坐标为,由(1)中,所以,
,椭圆的方程为,
设直线的斜率为,直线不与坐标轴垂直故,
直线的方程为 ,
将方程与椭圆方程联立得: 消得:,
由韦达定理得:,设线段中点坐标为,则,
则垂直平分线的方程为。令,点横坐标为:
,
因为,所以,
故点横坐标的取值范围为:。
【题目】2013年1月,北京经历了59年来雾霾天气最多的一个月.据气象局统计,北京市2013年1月1日至1月30日这30天里有26天出现雾霾天气,《环境空气质量指数(AQI)技术规定(试行)》如表1:
表1 空气质量指数AQI分组表
AQI指数M | 0~50 | 51~100 | 101~150 | 151~200 | 201~300 | >300 |
级别 | Ⅰ | Ⅱ | Ⅲ | Ⅳ | Ⅴ | Ⅵ |
状况 | 优 | 良 | 轻度污染 | 中度污染 | 重度污染 | 严重污染 |
表2是某气象观测点记录的连续4天里AQI指数M与当天的空气水平可见度y(km)的情况,表3是某气象观测点记录的北京市2013年1月1日至1月30日的AQI指数频数分布表.
表2 AQI指数M与当天的空气水平可见度y(km)的情况
AQI指数M | 900 | 700 | 300 | 100 |
空气水平可见度y(km) | 0.5 | 3.5 | 6.5 | 9.5 |
表3 北京市2013年1月1日至1月30日AQI指数频数分布表
AQI指数M | [0,200) | [200,400) | [400,600) | [600,800) | [800,1000] |
频数 | 3 | 6 | 12 | 6 | 3 |
(1)设x=,根据表2的数据,求出y关于x的线性回归方程.
(参考公式:,.)
(2)小王在北京开了一家洗车店,经小王统计:当AQI指数低于200时,洗车店平均每天亏损约2000元;当AQI指数在200至400时,洗车店平均每天收入约4000元;当AQI指数不低于400时,洗车店平均每天收入约7000元.
①估计小王的洗车店在2013年1月份平均每天的收入;
②从AQI指数在[0,200)和[800,1000]内的这6天中抽取2天,求这2天的收入之和不低于5000元的概率.
【题目】为了解市民对某项政策的态度,随机抽取了男性市民25人,女性市民75人进行调查,得到以下的列联表:
支持 | 不支持 | 合计 | |
男性 | 20 | 5 | 25 |
女性 | 40 | 35 | 75 |
合计 | 60 | 40 | 100 |
根据以上数据,能否有97.5%的把握认为市民“支持政策”与“性别”有关?
将上述调查所得的频率视为概率,现在从所有市民中,采用随机抽样的方法抽取4位市民进行长期跟踪调查,记被抽取的4位市民中持“支持”态度的人数为X,求X的分布列及数学期望。
附:.
0.15 | 0.100 | 0.050 | 0.025 | 0.010 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 |