题目内容
6.某抛物线的通径与圆x2+y2-4x+2y-11=0的半径相等,则该抛物线的焦点到其准线的距离为( )A. | 2 | B. | 4 | C. | 6 | D. | 8 |
分析 确定圆的半径,可得抛物线的通径,即可求出抛物线的焦点到其准线的距离.
解答 解:圆x2+y2-4x+2y-11=0可化为(x-2)2+(y+1)2=16,半径为4,
所以抛物线的通径为4,即2p=4,
所以p=2,
所以该抛物线的焦点到其准线的距离为2,
故选:A.
点评 本题考查抛物线的焦点到其准线的距离,考查圆的方程,求出圆的半径是关键.
练习册系列答案
相关题目
17.已知平面向量$\overrightarrow{a}$=(1,-2),$\overrightarrow{b}$=(4,m),且$\overrightarrow{a}$⊥$\overrightarrow{b}$,则向量$\overrightarrow{b}$在$\overrightarrow{a}$-$\overrightarrow{b}$方向上的投影为( )
A. | $\sqrt{5}$ | B. | -2$\sqrt{5}$ | C. | 4 | D. | -4 |
14.甲、乙两个养猪场每回出栏的成猪都在90~110公斤之间,重达102公斤的成猪称为优质猪.已知甲、乙两个养猪场每回养猪100头,本回出栏的成猪重量分布如下:
甲养猪场猪重频数分布表
乙养猪场猪重频数分布表
(Ⅰ)分别估计甲养猪场、乙养猪场出栏成猪的优质率;
(Ⅱ)已知乙养猪场出栏一头猪的利润y(单位:百元)与其重量x(单位:公斤)的关系为:y=$\left\{\begin{array}{l}{-2(x<94)}\\{2(94≤x<102)}\\{4(x≥102)}\end{array}\right.$估计乙养猪场平均每出栏一头猪的利润.
甲养猪场猪重频数分布表
猪的重量分组 | [90,94) | [94,98) | [98,102) | [102,106) | [106,110) |
频数 | 8 | 20 | 42 | 22 | 8 |
猪的重量分组 | [90,94) | [94,98) | [98,102) | [102,106) | [106,110) |
频数 | 4 | 12 | 42 | 32 | 10 |
(Ⅱ)已知乙养猪场出栏一头猪的利润y(单位:百元)与其重量x(单位:公斤)的关系为:y=$\left\{\begin{array}{l}{-2(x<94)}\\{2(94≤x<102)}\\{4(x≥102)}\end{array}\right.$估计乙养猪场平均每出栏一头猪的利润.
18.△ABC是边长为2的等边三角形,已知向量$\overrightarrow{a}$,$\overrightarrow{b}$满足$\overrightarrow{AB}$=2$\overrightarrow{a}$,$\overrightarrow{AC}$=2$\overrightarrow{a}$+$\overrightarrow{b}$,则下列结论正确的是( )
A. | |$\overrightarrow{b}$|=1 | B. | $\overrightarrow{a}$⊥$\overrightarrow{b}$ | C. | $\overrightarrow{a}$•$\overrightarrow{b}$=1 | D. | (4$\overrightarrow{a}$+$\overrightarrow{b}$)⊥$\overrightarrow{BC}$ |
16.下列函数中,既不是奇函数,也不是偶函数的是( )
A. | y=x+sin2x | B. | y=x2-cosx | C. | y=2x+$\frac{1}{{2}^{x}}$ | D. | y=x2+sinx |