题目内容
【题目】已知函数
(1)若函数有且只有一个零点,求实数的取值范围;
(2)若函数对恒成立,求实数的取值范围.
【答案】(1);(2).
【解析】
(1)求导得到,讨论和两种情况,计算函数的单调性,得到,再讨论,,三种情况,计算得到答案.
(2)计算得到,讨论,两种情况,分别计算单调性得到函数最值,得到答案.
(1),
①当时恒成立,所以单调递增,因为,所以有唯一零点,即符合题意;
②当时,令,
函数在上单调递减,在上单调递增,函数。
(i)当即,所以符合题意,
(ii)当即 时,
因为,
故存在,所以 不符题意
(iii)当 时,
因为,
设,
所以,单调递增,即,
故存在,使得,不符题意;
综上,的取值范围为。
(2)。
①当时,恒成立,所以 单调递增,所以,
即符合题意;
②当 时,恒成立,所以单调递增,
又因为,
所以存在,使得,且当时,。
即在上单调递减,所以,不符题意。
综上,的取值范围为.
练习册系列答案
相关题目