题目内容
【题目】在直角坐标系xOy中,以坐标原点为极点,x轴的非负半轴为极轴建立极坐标系;曲线C1的普通方程为(x-1)2 +y2 =1,曲线C2的参数方程为(θ为参数).
(Ⅰ)求曲线C1和C2的极坐标方程:
(Ⅱ)设射线θ=(ρ>0)分别与曲线C1和C2相交于A,B两点,求|AB|的值.
【答案】(Ⅰ),;(Ⅱ)
【解析】
(Ⅰ)根据,可得曲线C1的极坐标方程,然后先计算曲线C2的普通方程,最后根据极坐标与直角坐标的转化公式,可得结果.
(Ⅱ)将射线θ=分别与曲线C1和C2极坐标方程联立,可得A,B的极坐标,然后简单计算,可得结果.
(Ⅰ)
由
所以曲线的极坐标方程为,
曲线的普通方程为
则曲线的极坐标方程为
(Ⅱ)令,则,,
则,即,
所以,,
故.
练习册系列答案
相关题目
【题目】某地区为了调查高粱的高度、粒的颜色与产量的关系,对700棵高粱进行抽样调查,得到高度频数分布表如下:
表1:红粒高粱频数分布表
农作物高度() | ||||||
频数 | 2 | 5 | 14 | 13 | 4 | 2 |
表2:白粒高粱频数分布表
农作物高度() | ||||||
频数 | 1 | 7 | 12 | 6 | 3 | 1 |
(1)估计这700棵高粱中红粒高粱的棵数;画出这700棵高粱中红粒高粱的频率分布直方图;
(2)①估计这700棵高粱中高粱高(cm)在的概率;②在红粒高粱中,从高度(单位:cm)在中任选3棵,设表示所选3棵中高(单位:cm)在的棵数,求的分布列和数学期望.