题目内容
【题目】在直角坐标系xOy中,曲线C1的参数方程(t为参数),以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,已知曲线C2的极坐标方程为ρ=4sinθ.
(1)求C1的极坐标方程与C2的直角坐标方程;
(2)已知射线与C1交于O,P两点,与C2交于O,Q两点,且Q为OP的中点,求α.
【答案】(1),x2+(y﹣2)2=4.
(2)α.
【解析】
(1)曲线C1的参数方程消去参数t即可转化为直角坐标方程,再转化为极坐标方程,利用可将C2的极坐标方程转化为直角坐标方程;(2)由题意可设
,
,
利用极径和三角函数关系式即可求出结果.
(1)曲线C1的参数方程(t为参数),消去参数t转换为直角坐标方程为x2=4y,
转化为极坐标方程为.
曲线C2的极坐标方程为,即
,
由将上式转换为直角坐标方程为x2+y2=4y,整理得x2+(y﹣2)2=4.
(2)由题意可设,
因为射线与C1交于O,P两点,所以
,
与C2交于O,Q两点,所以,
又Q为OP的中点,所以,
即,化简得
,
因为,所以
.
![](http://thumb.zyjl.cn/images/loading.gif)
【题目】某大型商场的空调在1月到5月的销售量与月份相关,得到的统计数据如下表:
月份 | 1 | 2 | 3 | 4 | 5 |
销量 | 0.6 | 0.8 | 1.2 | 1.6 | 1.8 |
(1)经分析发现1月到5月的销售量可用线性回归模型拟合该商场空调的月销量(百件)与月份
之间的相关关系.请用最小二乘法求
关于
的线性回归方程
,并预测6月份该商场空调的销售量;
(2)若该商场的营销部对空调进行新一轮促销,对7月到12月有购买空调意愿的顾客进行问卷调查.假设该地拟购买空调的消费群体十分庞大,经过营销部调研机构对其中的500名顾客进行了一个抽样调查,得到如下一份频数表:
有购买意愿对应的月份 | 7 | 8 | 9 | 10 | 11 | 12 |
频数 | 60 | 80 | 120 | 130 | 80 | 30 |
现采用分层抽样的方法从购买意愿的月份在7月与12月的这90名顾客中随机抽取6名,再从这6人中随机抽取3人进行跟踪调查,求抽出的3人中恰好有2人是购买意愿的月份是12月的概率.
参考公式与数据:线性回归方程,其中
,
.
【题目】在某区“创文明城区”(简称“创城”)活动中,教委对本区四所高中学校按各校人数分层抽样,随机抽查了100人,将调查情况进行整理后制成下表:
学校 | ||||
抽查人数 | 50 | 15 | 10 | 25 |
“创城”活动中参与的人数 | 40 | 10 | 9 | 15 |
(注:参与率是指:一所学校“创城”活动中参与的人数与被抽查人数的比值)假设每名高中学生是否参与”创城”活动是相互独立的.
(1)若该区共2000名高中学生,估计学校参与“创城”活动的人数;
(2)在随机抽查的100名高中学生中,随机抽取1名学生,求恰好该生没有参与“创城”活动的概率;
(3)在上表中从两校没有参与“创城”活动的同学中随机抽取2人,求恰好
两校各有1人没有参与“创城”活动的概率是多少?