题目内容

(本小题满分14分)
已知等差数列{an}中,a1=-1,前12项和S12=186.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若数列{bn}满足,记数列{bn}的前n项和为Tn,
求证: (n∈N*).
(Ⅰ) an=-1+(n-1)×3=3n-4. (Ⅱ)见解析。
第一问考查数列中基本量的运算,这类问题主要是要把数列的通项与前n项和都用其首项与公差(或公比)表示出来;第二问先判断数列{bn}是等比数列,求出其前n项和,然后就很容易证明。
解:(Ⅰ)设等差数列{an}的公差为d,∵ a1=-1,S12=186,    
,                                      ……2分
即 186=-12+66d.                   ……4分∴d=3.                                                          ……5分
所以数列{an}的通项公式 an=-1+(n-1)×3=3n-4.                  ……7分
(Ⅱ)∵,an=3n-4,∴.                      ……8分
∵ 当n≥2时,,                                  ……9分
∴ 数列{bn}是等比数列,首项,公比.            ……10分
.                              ……12分
,∴
.                                      ……13分
所以.                                      ……14分
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网