题目内容
【题目】如图1,在直角梯形ABCD中,,,,将 沿折起,使平面平面,得到几何体,如图2所示.
(1)求证:平面;
(2)求二面角D-AB-C的正弦值.
【答案】(1)证明见解析;(2)
【解析】
(1)可结合线面垂直的判定定理和线面垂直的性质来进行证明,取AC中点O,连接DO,通过线面垂直的性质可得,再结合图形几何性质即可得证;
(2)可在(1)的基础之上作于F,为二面角 的平面角,通过几何关系求解即可
(1)证明:在图1中,由题意知,,,
,
取AC中点O,连接DO,则,又平面平面ABC,
且平面平面,平面ACD,
从而平面ABC,
又,,
平面ACD
(2)过D作于O,再过O作于F,
连接DF,易知为二面角 的平面角
易知,
,即为所求二面角的正弦值.
【题目】《中华人民共和国道路交通安全法》第47条的相关规定:机动车行经人行横道时,应当减速慢行;遇行人正在通过人行横道,应当停车让行,俗称“礼让斑马线”,《中华人民共和国道路交通安全法》第90条规定:对不礼让行人的驾驶员处以扣3分,罚款50元的处罚.
(1)交警从这5个月内通过该路口的驾驶员中随机抽查了50人,调查驾驶员不“礼让斑马线”行为与驾龄的关系,得到如下列联表:能否据此判断有97.5%的把握认为“礼让斑马线”行为与驾龄有关?
不礼让斑马线 | 礼让斑马线 | 合计 | |
驾龄不超过1年 | 22 | 8 | 30 |
驾龄1年以上 | 8 | 12 | 20 |
合计 | 30 | 20 | 50 |
(2)下图是某市一主干路口监控设备所抓拍的5个月内驾驶员不“礼让斑马线”行为的折线图:
请结合图形和所给数据求违章驾驶员人数y与月份x之间的回归直线方程,并预测该路口7月份的不“礼让斑马线”违章驾驶员人数.
附注:参考数据:,.
参考公式:,,(其中)
0.150 | 0.100 | 0.050 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |