题目内容
【题目】给定一个项的实数列, , , ,任意选取一个实数,变换将数列, , , 变换为数列, , , ,再将得到的数列继续实施这样的变换,这样的变换可以连续进行多次,并且每次所选择的实数可以不相同,第次变换记为,其中为第次变换时所选择的实数.如果通过次变换后,数列中的各项均为,则称, , , 为“次归零变换”.
()对数列, , , ,给出一个“次归零变换”,其中.
()对数列, , , , ,给出一个“次归零变换”,其中.
()证明:对任意项的实数列,都存在“次归零变换”.
【答案】(1)见解析;(2)见解析;(3)见解析
【解析】试题分析:(1)根据新定义,计算经变换; ; ; ,可得结论;(2)计算经变换, , , , 可得结论;(3)记经过变换后,数列为, , ,取, ,继续做类似的变换,取,( ,经后,得到数列的前项相等,再取,经后,即可得到结论;
试题解析:(): , , , ; : , , , ; : , , , ; : , , , .
(): , , , , ; : , , , , ; : , , , , ; : , , , , ; : , , , , .
()证明:经过次变换后,数列记为, , , , , ,
取,则,即经后,前两项相等;
取,则,
即经后,前三项相等;
设进行变换时, ,变换后数列变为, , , , ,则;
那么,进行第次变换时,取,
则变换后数列变为: , , , , , , , ,
显然有;
经过次变换后,显然有;
最后,取,经过变换后,数列各项均为,
所以对任意数列,都存在“次归零变换”.
【题目】为了解某校学生参加社区服务的情况,采用按性别分层抽样的方法进行调查.已知该校共有学生960人,其中男生560人,从全校学生中抽取了容量为的样本,得到一周参加社区服务的时间的统计数据好下表:
超过1小时 | 不超过1小时 | |
男 | 20 | 8 |
女 | 12 | m |
(Ⅰ)求,;
(Ⅱ)能否有95%的把握认为该校学生一周参加社区服务时间是否超过1小时与性别有关?
(Ⅲ)以样本中学生参加社区服务时间超过1小时的频率作为该事件发生的概率,现从该校学生中随机调查6名学生,试估计6名学生中一周参加社区服务时间超过1小时的人数.
附:
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
【题目】下表提供了工厂技术改造后某种型号设备的使用年限x和所支出的维修费y(万元)的几组对照数据:
x(年) | 2 | 3 | 4 | 5 | 6 |
y(万元) | 1 | 2.5 | 3 | 4 | 4.5 |
(1)若知道y对x呈线性相关关系,请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程;
(2)已知该工厂技术改造前该型号设备使用10年的维修费用为9万元,试根据(1)求出的线性回归方程,预测该型号设备技术改造后,使用10年的维修费用能否比技术改造前降低?参考公式:,.