题目内容
【题目】给出下列命题:(1)若(a2-1)+(a2+3a+2)i(a∈R)是纯虚数,则实数a=±1;(2)1+i2是虚数;(3)在复平面中,实轴上的点均表示实数,虚轴上的点均表示纯虚数.其中真命题的个数为( )
A. 0 B. 1
C. 2 D. 3
【答案】A
【解析】
(1)若(a2-1)+(a2+3a+2)i(a∈R)是纯虚数,则a2-1=0且a2+3a+2≠0,解得a=1。
(2)1+i2=1-1=0是实数。
(3)除原点外虚轴上的点均表示纯虚数,原点对应的复数为0。
(1)若(a2-1)+(a2+3a+2)i(a∈R)是纯虚数,则a2-1=0且a2+3a+2≠0,解得a=1,所以错误;(2)1+i2=1-1=0是实数,所以错误;(3)除原点外虚轴上的点均表示纯虚数,原点对应的复数为0,所以错误.故选A
练习册系列答案
相关题目