题目内容
【题目】如图,在矩形中,,,点是边上一点,且,点是的中点,将沿着折起,使点运动到点处,且满足.
(1)证明:平面;
(2)求二面角的余弦值.
【答案】(1)见解析;(2)
【解析】
(1)取的中点,连接,,由,进而,由,得. 进而平面,进而结论可得证(2)(方法一)过点作的平行线交于点,以点为坐标原点,所在直线分别为轴、轴、轴建立如图所示的空间直角坐标系,求得平面平面的法向量,由二面角公式求解即可(方法二)取的中点,上的点,使,连接,得,,得二面角的平面角为,再求解即可
(1)证明:取的中点,连接,,由已知得,所以,又点是的中点,所以.
因为,点是线段的中点,
所以.
又因为,所以,从而平面,
所以,又,不平行,
所以平面.
(2)(方法一)由(1)知,过点作的平行线交于点,以点为坐标原点,所在直线分别为轴、轴、轴建立如图所示的空间直角坐标系,则点,,,,
所以,,.
设平面的法向量为,
由,得,令,得.
同理,设平面的法向量为,
由,得,
令,得.
所以二面角的余弦值为.
(方法二)取的中点,上的点,使,连接,易知,.
由(1)得,所以平面,所以,
又,所以平面,
所以二面角的平面角为.
又计算得,,,
所以.
【题目】设椭圆,其长轴长是短轴长的倍,过焦点且垂直于轴的直线被椭圆截得的弦长为.
(1)求椭圆的方程;
(2)点是椭圆上横坐标大于的动点,点在轴上,圆内切于,试判断点在何位置时的长度最小,并证明你的判断.
【题目】平顶山市公安局交警支队依据《中华人民共和国道路交通安全法》第条规定:所有主干道路凡机动车途经十字口或斑马线,无论转弯或者直行,遇有行人过马路,必须礼让行人,违反者将被处以元罚款,记分的行政处罚.如表是本市一主干路段监控设备所抓拍的个月内,机动车驾驶员不“礼让斑马线”行为统计数据:
月份 | |||||
违章驾驶员人数 |
(Ⅰ)请利用所给数据求违章人数与月份之间的回归直线方程;
(Ⅱ)预测该路段月份的不“礼让斑马线”违章驾驶员人数.
参考公式:,.