题目内容
已知α、β均为锐角,且sinα=,tan(α-β)=-.(1) 求sin(α-β)的值;(2) 求cosβ的值.
(1)-(2)
解析
设函数其中向量,.(1)求的最小值,并求使取得最小值的的集合;(2)将函数的图象沿轴向右平移,则至少平移多少个单位长度,才能使得到的函数的图象关于轴对称?
已知向量,,函数.(1)求函数的最小正周期;(2)若,,求的值.
已知定义域为,值域为[-5,1],求实数的值。
已知函数f(x)=-2sin2x+2sinxcosx+1.(1)求f(x)的最小正周期及对称中心;(2)若x∈,求f(x)的最大值和最小值.
已知a=(2cosx,cos2x),b=(sinx,-),f(x)=a·b.(1)求f(x)的振幅、周期,并画出它在一个周期内的图象;(2)说明它可以由函数y=sinx的图象经过怎样的变换得到.
已知函数f(x)=2sin xcos x+2cos2x-,x∈R.(1)求函数f(x)的最小正周期;(2)在锐角△ABC中,若f(A)=1,·=,求△ABC的面积.
已知函数f(x)=cos+2sin2x,x∈R.(1)求函数f(x)的最小正周期及对称轴方程;(2)当x∈时,求函数f(x)的最大值和最小值及相应的x值.
已知函数f(x)=Asin,x∈R,A>0,0<φ<,y=f(x)的部分图象如图所示,P、Q分别为该图象的最高点和最低点,点P的坐标为(1,A).(1)求f(x)的最小正周期及φ的值;(2)若点R的坐标为(1,0),∠PRQ=,求A的值.