题目内容
【题目】函数.
(1)当时,求在区间上的最值;
(2)讨论的单调性;
(3)当时,有恒成立,求的取值范围.
【答案】(1)(2)当时,在递增;当时,在递增,在上递减.当时,在递减.(3)
【解析】试题分析:(1)在的最值只能在和区间的两个端点取到,因此,通过算出上述点并比较其函数值可得函数在的最值;(2)算出,对的取值范围分情况讨论即可;(3)根据(2)中得到的单调性化简不等式,从而求解不等式,解得的取值范围.
试题解析:(1)当时,,∴,
∵的定义域为,∴由,得.……………………2分
∴在区间上的最值只可能在取到,
而,,,……4分
(2),,
①当,即时,,∴在上单调递减;……5分
②当时,,∴在上单调递增;…………………………6分
③当时,由得,∴或(舍去)
∴在上单调递增,在上单调递减;……………………8分
综上,当时,在单调递增;
当时,在单调递增,在上单调递减.
当时,在单调递减;
(3)由(2)知,当时,,
即原不等式等价于,…………………………12分
即,整理得,
∴,………………13分
又∵,∴的取值范围为.……………………14分
练习册系列答案
相关题目