题目内容
【题目】2020年春季,某出租汽车公司决定更换一批新的小汽车以代替原来报废的出租车,现有采购成本分别为万元/辆和万元/辆的两款车型,根据以往这两种出租车车型的数据,得到两款出租车车型使用寿命频数表如下:
(1)填写下表,并判断是否有的把握认为出租车的使用寿命年数与汽车车型有关?
(2)从和的车型中各随机抽取车,以表示这车中使用寿命不低于年的车数,求的分布列和数学期望;
(3)根据公司要求,采购成本由出租公司负责,平均每辆出租车每年上交公司万元,其余维修和保险等费用自理.假设每辆出租车的使用寿命都是整数年,用频率估计每辆出租车使用寿命的概率,分别以这辆出租车所产生的平均利润作为决策依据,如果你是该公司的负责人,会选择采购哪款车型?
附:,.
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
【答案】(1)填表答案见解析,有的把握认为出租车的使用寿命年数与汽车车型有关.(2)分布列答案见解析,数学期望:.(3)采购款车型.
【解析】
(1)根据题目所给数据填写列联表,计算出的值,由此判断出有的把握认为出租车的使用寿命年数与汽车车型有关.
(2)利用相互独立事件概率乘法公式计算出分布列,并求得数学期望.
(3)分别计算出两种车型的平均利润,由此判断出采购款车型.
(1)填表如下:
使用寿命不高于年 | 使用寿命不低于年 | 总计 | |
型 | 30 | 70 | 100 |
型 | 50 | 50 | 100 |
总计 | 80 | 120 | 200 |
由列联表可知,
故有的把握认为出租车的使用寿命年数与汽车车型有关.
(2)由题意可知,型车使用寿命不低于年的车数占,低于年的车数占;型车使用寿命不低于年的车数占,低于年的车数占.且可能的取值为.
,,,
的分布列为:
0 | 1 | 2 | ||||
分数不少于120分 | 分数不足120分 | 合计 | |
线上学习时间不少于5小时 | 4 | 19 | |
线上学习时间不足5小时 | |||
合计 | 45 |
(1)请完成上面列联表;并判断是否有99%的把握认为“高三学生的数学成绩与学生线上学习时间有关”;
(2)①按照分层抽样的方法,在上述样本中从分数不少于120分和分数不足120分的两组学生中抽取9名学生,设抽到不足120分且每周线上学习时间不足5小时的人数是,求的分布列(概率用组合数算式表示);
②若将频率视为概率,从全校高三该次检测数学成绩不少于120分的学生中随机抽取20人,求这些人中每周线上学习时间不少于5小时的人数的期望和方差.
(下面的临界值表供参考)
0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(参考公式其中)