题目内容

【题目】已知椭圆的离心率为上一点.

(1)求椭圆的方程;

(2)设分别关于两坐标轴及坐标原点的对称点,平行于的直线于异于的两点.点关于原点的对称点为.证明:直线轴围成的三角形是等腰三角形.

【答案】(1);(2)证明见解析

【解析】

试题分析:(1)因为离心率为,所以;即的方程为:,代入即可;(2)设直线的斜率为,则要证直线轴围成的三角形是等腰三角形需证由已知可得直线的斜率为,则直线的方程为:,联立直线和椭圆的方程,找到斜率,代入相应的量即可

试题解析:(1)因为离心率为,所以

从而的方程为:

代入解得:

因此

所以椭圆的方程为:

(2)由题设知的坐标分别为

因此直线的斜率为

设直线的方程为:

得:

时,不妨设

于是

分别设直线的斜率为

则要证直线轴围成的三角形是等腰三角形,

只需证

所以直线轴转成的三角形是等腰三角形

练习册系列答案
相关题目

【题目】指数是用体重公斤数除以身高米数的平方得出的数字,是国际上常用的衡量人体胖瘦程度以及是否健康的一个标准.对于高中男体育特长生而言,当数值大于或等于20.5时,我们说体重较重,当数值小于20.5时,我们说体重较轻,身高大于或等于我们说身高较高,身高小于170cm我们说身高较矮.

(Ⅰ)已知某高中共有32名男体育特长生,其身高与指数的数据如散点图,请根据所得信息,完成下述列联表,并判断是否有的把握认为男生的身高对指数有影响.

身高较矮

身高较高

合计

体重较轻

体重较重

合计

(Ⅱ)①从上述32名男体育特长生中随机选取8名,其身高和体重的数据如表所示:

编号

1

2

3

4

5

6

7

8

身高

166

167

160

173

178

169

158

173

体重

57

58

53

61

66

57

50

66

根据最小二乘法的思想与公式求得线性回归方程为.利用已经求得的线性回归方程,请完善下列残差表,并求(解释变量(身高)对于预报变量(体重)变化的贡献值)(保留两位有效数字);

编号

1

2

3

4

5

6

7

8

体重(kg

57

58

53

61

66

57

50

66

残差

②通过残差分析,对于残差的最大(绝对值)的那组数据,需要确认在样本点的采集中是否有人为的错误,已知通过重新采集发现,该组数据的体重应该为.小明重新根据最小二乘法的思想与公式,已算出,请在小明所算的基础上求出男体育特长生的身高与体重的线性回归方程.

参考数据:

参考公式:

0.10

0.05

0.01

0.005

2.706

3.811

6.635

7.879

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网