题目内容
【题目】已知是定义在R上的奇函数,且满足,=1,数列{}满足=﹣1, (),其中是数列{}的前n项和,则=
A. ﹣2 B. ﹣1 C. 0 D. 1
【答案】A
【解析】
推导出Sn=2an+n,从而an=Sn﹣Sn﹣1=2an+n﹣2an﹣1﹣(n﹣1),得{an﹣1}是首项为﹣2,公差为2的等比数列,求出a5=﹣31,a6=﹣63,由f(2﹣x)=f(x),f(﹣1)=1,得f(x)关于直线x=1对称,由函数f(x)是定义在R上的奇函数,得到函数f(x)是一个周期函数,且T=4,由此能求出f(a5)+f(a6).
∵数列{an}满足a1=﹣1,(n∈N+),其中Sn是数列{an}的前n项和,
∴Sn=2an+n,
an=Sn﹣Sn﹣1=2an+n﹣2an﹣1﹣(n﹣1),
整理,得=2,
∵a1﹣1=﹣2,
∴{an﹣1}是首项为﹣2,公差为2的等比数列,
∴an﹣1=﹣2×2n﹣1,∴an=1﹣2×2n﹣1.
∴a5=1﹣2×24=﹣31,=﹣63,
∵f(2﹣x)=f(x),f(﹣1)=1,
∴f(x)关于直线x=1对称,
又∵函数f(x)是定义在R上的奇函数
∴函数f(x)是一个周期函数,且T=4,
∴f(a5)+f(a6)=f(﹣31)+f(﹣63)
=f(32﹣31)+f(64﹣63)=f(1)+f(1)=﹣f(﹣1)﹣f(﹣1)=﹣1﹣1=﹣2.
故选:A.
练习册系列答案
相关题目