题目内容
【题目】如图,正方体的棱长为1,,求:
(1)与所成角;
(2)求点B到与平面的距离;
(3)平面与平面所成的二面角.
【答案】(1);(2);(3)
【解析】
(1)根据A′C′∥AC,可得AO与A′C′所成角就是∠OAC,解Rt△AOC,求出∠OAC的大小.
(2)如图,作OE⊥BC于E,连接AE,由平面BC′⊥平面ABCD,得OE⊥平面ABCD,∠OAE为OA与平面ABCD所成角,解在Rt△OAE,求出tan∠OAE的大小.
(3)由OC⊥OA,OC⊥OB,可知OC⊥平面AOB,又OC平面AOC,故平面AOB⊥平面AOC,从而得到平面AOB与平面AOC所成角为90°.
:(1)∵A′C′∥AC,∴AO与A′C′所成角就是∠OAC.∵OC⊥OB,AB⊥平面BC′,∴OC⊥OA,
在Rt△AOC中, ,∴∠OAC=30°.
(2)如图,作OE⊥BC于E,连接AE,∵平面BC′⊥平面ABCD,∴OE⊥平面ABCD, OE为三棱锥O-ABC的高.
在Rt△OAE中,OE=,为等边三角形 则 设点B到与平面的距离为h,则由
即点B到与平面的距离为.
(3)∵OC⊥OA,OC⊥OB,∴OC⊥平面AOB.又∵OC平面AOC,∴平面AOB⊥平面AOC,即平面AOB与平面AOC所成角为90°.
【题目】(本题14分)下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量(吨)与相应的生产能耗(吨)标准煤的几组对照数据:
3 | 4 | 5 | 6 | |
2.5 | 3 | 4 | 4.5 |
(1)请画出上表数据的散点图;并指出x,y 是否线性相关;
(2)请根据上表提供的数据,用最小二乘法求出关于的线性回归方程;
(3)已知该厂技术改造前100吨甲产品能耗为90吨标准煤,试根据(2)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技术改造前降低多少吨标准煤?
(参考:用最小二乘法求线性回归方程系数公式,)