题目内容

【题目】在平面直角坐标系中,曲线为参数).在以为原点, 轴正半轴为极轴的极坐标系中,曲线的极坐标方程为,射线除极点外的一个交点为,设直线经过点,且倾斜角为,直线与曲线的两个交点为.

1)求的普通方程和的直角坐标方程;

2)求的值.

【答案】1的普通方程是的直角坐标方程是2

【解析】

1)利用同角三角函数的基本关系式消去参数,求得的参数方程,利用极坐标方程转化为直角坐标方程的公式,将的的极坐标方程,转化为直角坐标方程.

2)联立的方程和射线的方程,求得点坐标,进而求得直线的参数方程,代入椭圆方程,写出韦达定理,根据直线参数的几何意义,求得的值.

1的普通方程是.

,所以的直角坐标方程是

2)射线联立不是极点,.

依题意,直线的参数方程可以表示为 为参数),

代入,点的参数是,则

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网