题目内容
19.方程lgx=4-x的根x∈(k,k+1),k∈Z,则k=3.分析 设函数f(x)=lgx+x-4,判断解的区间,即可得到结论.
解答 解:设函数f(x)=lgx+x-4,则函数f(x)单调递增,
∵f(4)=lg4+4-4=lg4>0,f(3)=lg3+3-4=lg3-1<0,
∴f(3)f(4)<0,
在区间(3,4)内函数f(x)存在零点,
∵方程lgx=4-x的解在区间(k,k+1)(k∈Z),
∴k=3,
故答案为:3.
点评 本题主要考查方程根的存在性,根据方程构造函数,利用函数零点的条件判断,零点所在的区间是解决本题的关键.
练习册系列答案
相关题目
5.定义一种新的运算“?”:a?b=$\left\{\begin{array}{l}{a(a≥b)}\\{b(a<b)}\end{array}\right.$,则函数y=2x+1?2-x的减区间和最小值分别是( )
A. | (-∞,-$\frac{1}{2}$],1 | B. | (-∞,-$\frac{1}{2}$],$\sqrt{2}$ | C. | [-$\frac{1}{2}$,+∞),1 | D. | [-$\frac{1}{2}$,+∞),$\sqrt{2}$ |
14.已知m、n是不重合的直线,α、β是不重合的平面,正确的是( )
A. | 若m⊥α,m⊥β,则α∥β | B. | 若α∩β=n,m∥n,则m∥α,m∥β | ||
C. | 若m∥α,m⊥n,则n⊥α | D. | 若α⊥β,m⊥α,则m∥β |
4.在用二分法求方程x3-x-1=0的一个近似解时,现在已经将一根锁定在区间(1,2)内,则下一步可判定该根所在区间为( )
A. | (1,1.25) | B. | (1,1.5) | C. | (1.5,2) | D. | (1.25,1.5) |
8.设A={x|y=$\sqrt{1-x}$},B={y|y=ln(1+x)},则A∩B=( )
A. | (-1,﹢∞) | B. | (-∞,1] | C. | (-1,1] | D. | ∅ |