题目内容
【题目】已知函数,对任意a,恒有,且当时,有.
Ⅰ求;
Ⅱ求证:在R上为增函数;
Ⅲ若关于x的不等式对于任意恒成立,求实数t的取值范围.
【答案】(Ⅰ); (Ⅱ)见解析; (Ⅲ).
【解析】
Ⅰ根据题意,由特殊值法令,则,变形可得的值,
Ⅱ任取,,且设,则,结合,分析可得,结合函数的单调性分析可得答案;
Ⅲ根据题意,原不等式可以变形为,结合函数的单调性可得,令,则原问题转化为在上恒成立,即对任意恒成立,结合二次函数的性质分析可得答案.
Ⅰ根据题意,在中,
令,则,则有;
Ⅱ证明:任取,,且设,则,,
又由,
则,
则有,
故在R上为增函数.
Ⅲ根据题意,,
即,则,
又由,则,
又由在R上为增函数,则,
令,,则,
则原问题转化为在上恒成立,
即对任意恒成立,
令,只需,
而,,
当时,,则.
故t的取值范围是.
【题目】支付宝作为一款移动支付工具,在日常生活中起到了重要的作用.巴蜀中学高2018届学生为了调查支付宝在人群中的使用情况,在街头随机对名市民进行了调查,结果如下.
(1)对名市民按年龄以及是否使用支付宝进行分组,得到以下表格,试问能否有的把握认为“使用支付宝与年龄有关”?
使用支付宝 | 不使用支付宝 | 合计 | |
岁以上 | |||
岁以下 | |||
合计 |
(2)现采用分层抽样的方法,从被调查的岁以下的市民中抽取了位进行进一步调查,然后从这位市民中随机抽取位,求至少抽到位“使用支付宝”的市民的概率;
(3) 为了鼓励市民使用支付宝,支付宝推出了“奖励金”活动,每使用支付宝支付一次,分别有的概率获得元奖励金,每次支付获得的奖励金情况互不影响.若某位市民在一周使用了次支付宝,记为这一周他获得的奖励金数,求的分布列和数学期望.
附:,其中.
【题目】为调查人们在购物时的支付习惯,某超市对随机抽取的600名顾客的支付方式进行了统计,数据如下表所示:
支付方式 | 微信 | 支付宝 | 购物卡 | 现金 |
人数 | 200 | 150 | 150 | 100 |
现有甲、乙、丙三人将进入该超市购物,各人支付方式相互独立,假设以频率近似代替概率.
(1)求三人中使用微信支付的人数多于现金支付人数的概率;
(2)记为三人中使用支付宝支付的人数,求的分布列及数学期望.