题目内容
【题目】设函数f(x)=1-x2+ln(x+1).
(1)求函数f(x)的单调区间;
(2)若不等式f(x)>-x2(k∈N*)在(0,+∞)上恒成立,求k的最大值.
【答案】(1)见解析(2)3
【解析】
(1)首先求出f(x)的定义域,函数f(x)的导数,分别令它大于0,小于0,解不等式,必须注意定义域,求交集;
(2)化简不等式f(x)>﹣x2,得:(x+1)[1+ln(x+1)]>kx,令g(x)=(x+1))[1+ln(x+1)]﹣kx,求出g'(x),由x>0,求出2+ln(x+1)>2,讨论k,分k≤2,k>2,由恒成立结合单调性判断k的取值,从而得到k的最大值.
(1)函数f(x)的定义域为(﹣1,+∞),
函数f(x)的导数f'(x)=﹣2x+,
令f'(x)>0则>2x,
解得,
令f'(x)<0则,
解得x>或x<,
∵x>﹣1,
∴f(x)的单调增区间为(﹣1,),
单调减区间为(,+∞);
(2)不等式f(x)>﹣x2
即1﹣x2+ln(x+1)>,即1+ln(x+1)>,
即(x+1)[1+ln(x+1)]>kx(k∈N*)在(0,+∞)上恒成立,
令g(x)=(x+1))[1+ln(x+1)]﹣kx,则
g'(x)=2+ln(x+1)﹣k,
∵x>0,∴2+ln(x+1)>2,
若k≤2,则g'(x)>0,即g(x)在(0,+∞)上递增,
∴g(x)>g(0)即g(x)>1>0,
∴(x+1)[1+ln(x+1)]>kx(k∈N*)在(0,+∞)上恒成立;
若k>2,可以进一步分析,只需满足最小值比0大,即可,
结合K为正整数,故k的最大值为3.
【题目】 由经验得知,在某商场付款处排队等候付款的人数及概率如下表
排队人数 | 0 | 1 | 2 | 3 | 4 | 5人以上 |
概率 | 0.1 | 0.16 | 0.3 | 0.3 | 0.1 | 0.04 |
(1)至多有2人排队的概率是多少?
(2)至少有2人排队的概率是多少?