题目内容
【题目】用n种不同的颜色为下列两块广告牌着色,(如图甲、乙),要求在A,B,C,D四个区域中相邻(有公共边界)的区域不用同一颜色.
(1)若n=6,则为甲图着色时共有多少种不同的方法;
(2)若为乙图着色时共有120种不同方法,求n.
【答案】(1)480(种);(2)n=5.
【解析】试题分析:(1)由题意知本题是一个分步乘法计数原理,对区域①②③④按顺序着色,第一块有6种方法,第二块就不能选第一块的颜色,有5种结果,以此类推,根据分步计数原理得到结果.
(2)利用分步乘法计数原理得到不同的染色方法有n(n﹣1)(n﹣2)(n﹣3),根据共有120种结果,列出等式,解关于n的方程,得到结果.
试题解析:
(1)对区域A,B,C,D按顺序着色,
共有6×5×4×4=480(种)
(2) 对区域A,B,C,D按顺序着色,依次有n种、n-1种、n-2种和n-3种,由分布乘法计数原理,不同的着色方法共有n(n-1)(n-2(n-3)=120,整理得(n2-3n)(n2-3n+2)=120,(n2-3n)2+2(n2-3n)-120=0
n2-3n-10=0或n2-3n+12=0(舍去),解得n=5.
【题目】上世纪八十年代初, 邓小平同志曾指出“在人才的问题上,要特别强调一下,必须打破常规去发现、选拔和培养杰出的人才”. 据此,经省教育厅批准,某中学领导审时度势,果断作出于1985年开始施行超常实验班教学试验的决定.一时间,学生兴奋,教师欣喜,家长欢呼,社会热议.该中学实验班一路走来,可谓风光无限,硕果累累,尤其值得一提的是,1990年,全国共招收150名少年大学生,该中学就有19名实验班学生被录取,占全国的十分之一,轰动海内外.设该中学超常实验班学生第x年被录取少年大学生的人数为y.
左下表为该中学连续5年实验班学生被录取少年大学生人数,求y关于x的线性回归方程,并估计第6年该中学超常实验班学生被录取少年大学生人数;
年份序号x | 1 | 2 | 3 | 4 | 5 |
录取人数y | 10 | 11 | 14 | 16 | 19 |
附1:
下表是从该校已经毕业的100名高中生录取少年大学生人数与是否接受超常实验班教育得到
2×2列联表,完成上表,并回答:是否有95%以上的把握认为“录取少年大学生人数与是否接受超常实验班教育有关系”.
附2:
接受超常实验班教育 | 未接受超常实验班教育 | 合计 | |
录取少年大学生 | 60 | 80 | |
未录取少年大学生 | 10 | ||
合计 | 30 | 100 |
0.50 | 0.40 | 0.10 | 005 | |
0.455 | 0.708 | 2.706 | 3.841 |
【题目】某工厂用甲、乙两种不同工艺生产一大批同一种零件,零件尺寸均在[21.7,22.3](单位:cm)之间,把零件尺寸在[21.9,22.1)的记为一等品,尺寸在[21.8,21.9)∪[22.1,22.2)的记为二等品,尺寸在[21.7,21.8)∪[22.2,22.3]的记为三等品,现从甲、乙工艺生产的零件中各随机抽取100件产品,所得零件尺寸的频率分布直方图如图所示.
P(K2≥k0) | 0.10 | 0.05 | 0.01 |
k0 | 2.706 | 3.841 | 6.635 |
附:
(1)根据上述数据完成下列2×2列联表,根据此数据,你认为选择不同的工艺与生产出一等品是否有关?
甲工艺 | 乙工艺 | 总计 | |
一等品 | |||
非一等品 | |||
总计 |
(2)以上述各种产品的频率作为各种产品发生的概率,若一等品、二等品、三等品的单件利润分别为30元、20元、15元,你认为以后该工厂应该选择哪种工艺生产该种零件?请说明理由.