题目内容

9.计算:$[\begin{array}{l}{1}&{2}\\{2}&{1}\end{array}]$$[\begin{array}{l}{-1}&{2}\\{3}&{-4}\end{array}]$=$[\begin{array}{l}{5}&{-6}\\{1}&{0}\end{array}]$.

分析 通过矩阵乘法的性质计算即得结论.

解答 解:$[\begin{array}{l}{1}&{2}\\{2}&{1}\end{array}]$$[\begin{array}{l}{-1}&{2}\\{3}&{-4}\end{array}]$=$[\begin{array}{l}{1×(-1)+2×3}&{1×2+2×(-4)}\\{2×(-1)+1×3}&{2×2+1×(-4)}\end{array}]$=$[\begin{array}{l}{5}&{-6}\\{1}&{0}\end{array}]$,
故答案为:$[\begin{array}{l}{5}&{-6}\\{1}&{0}\end{array}]$.

点评 本题考查矩阵乘法的运算,注意解题方法的积累,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网