题目内容
【题目】已知圆C的圆心在直线l:y=2x上,且经过点A(﹣3,﹣1),B(4,6).
(Ⅰ)求圆C的方程;
(Ⅱ)点P是直线l上横坐标为﹣4的点,过点P作圆C的切线,求切线方程.
【答案】(Ⅰ);(Ⅱ) 和.
【解析】试题分析:(Ⅰ)设圆心,由圆经过点,可得,由此求得的值,可得圆心和半径,从而求得圆的标准方程;(Ⅱ)求出,分切线斜率不存在、切线斜率存在两种情况讨论,利用点到直线的距离公式求出切线斜率即可,即可求切线方程.
试题解析:(Ⅰ)设圆的方程:
, ,
解出: , ,
所以圆的方程为;
(Ⅱ)因为
①若斜率存在,设切线方程为,
即,所以圆心到直线的距离为,
解得,
所以切线方程为:
②若切线斜率不存在,则切线方程为(满足题意);
综上: 和.
练习册系列答案
相关题目
【题目】某社区超市购进了A,B,C,D四种新产品,为了解新产品的销售情况,该超市随机调查了15位顾客(记为)购买这四种新产品的情况,记录如下(单位:件):
顾 客 产 品 | |||||||||||||||
A | 1 | 1 | 1 | 1 | 1 | ||||||||||
B | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | |||||||
C | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ||||||||
D | 1 | 1 | 1 | 1 | 1 | 1 |
(Ⅰ)若该超市每天的客流量约为300人次,一个月按30天计算,试估计产品A的月销售量(单位:件);
(Ⅱ)为推广新产品,超市向购买两种以上(含两种)新产品的顾客赠送2元电子红包.现有甲、乙、丙三人在该超市购物,记他们获得的电子红包的总金额为X,
求随机变量X的分布列和数学期望;
(Ⅲ)若某顾客已选中产品B,为提高超市销售业绩,应该向其推荐哪种新产品?(结果不需要证明)