题目内容

5.已知|$\overrightarrow{a}$|=2,|$\overrightarrow{b}$|=3,$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为120°.
(Ⅰ)求(3$\overrightarrow{a}-\overrightarrow{b}$)$•(\overrightarrow{a}+2\overrightarrow{b})$的值;
(Ⅱ)求|$\overrightarrow{a}+\overrightarrow{b}$|的值.

分析 求解$\overrightarrow{a}$$•\overrightarrow{b}$=|$\overrightarrow{a}$||$\overrightarrow{b}$|cos120°
(I)展开(3$\overrightarrow{a}$$-\overrightarrow{b}$)•($\overrightarrow{a}$$+2\overrightarrow{b}$)=3$\overrightarrow{a}$2$+5\overrightarrow{a}$$•\overrightarrow{b}$$-2\overrightarrow{b}$2,代入即可
(II)根据|$\overrightarrow{a}$$+\overrightarrow{b}$|=$\sqrt{(\overrightarrow{a}+\overrightarrow{b})^{2}}$=$\sqrt{{\overrightarrow{a}}^{2}+2\overrightarrow{a}•\overrightarrow{b}+{\overrightarrow{b}}^{2}}$求解.

解答 解:∵|$\overrightarrow{a}$|=2,|$\overrightarrow{b}$|=3,$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为120°
∴$\overrightarrow{a}$$•\overrightarrow{b}$=|$\overrightarrow{a}$||$\overrightarrow{b}$|cos120°=2×$3×(-\frac{1}{2})$=-3,
(Ⅰ)(3$\overrightarrow{a}$$-\overrightarrow{b}$)•($\overrightarrow{a}$$+2\overrightarrow{b}$)=3$\overrightarrow{a}$2$+5\overrightarrow{a}$$•\overrightarrow{b}$$-2\overrightarrow{b}$2=12-15-18=-21
(Ⅱ)|$\overrightarrow{a}$$+\overrightarrow{b}$|=$\sqrt{(\overrightarrow{a}+\overrightarrow{b})^{2}}$=$\sqrt{{\overrightarrow{a}}^{2}+2\overrightarrow{a}•\overrightarrow{b}+{\overrightarrow{b}}^{2}}$=+9=$\sqrt{7}$.

点评 本题考察了平面向量的数量积的运用,向量的线性运算,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网