题目内容
4.在△ABC中,角A,B,C所对应的边分别为a,b,c,且a,b,c成等差数列,求证:$\frac{tanA}{2}$•$\frac{tanC}{2}$≥($\frac{tanB}{2}$)2.分析 运用等差数列的性质,结合正弦定理,三角函数的和差化积公式和同角的商数关系,化积可得tan$\frac{A}{2}$tan$\frac{C}{2}$=$\frac{1}{3}$,再由二倍角的正切公式,结合基本不等式化积所求不等式的左边,再由余弦定理和基本不等式可得B的范围,进而得证.
解答 解:在△ABC中,∵a,b,c成等差数列,
∴2b=a+c,再结合正弦定理可得2sinB=sinA+sinC.
2sin(A+C)=sinA+sinC,
4sin$\frac{A+C}{2}$cos$\frac{A+C}{2}$=2sin$\frac{A+C}{2}$cos$\frac{A-C}{2}$,
即为2(cos$\frac{A}{2}$cos$\frac{C}{2}$-sin$\frac{A}{2}$sin$\frac{C}{2}$)=cos$\frac{A}{2}$cos$\frac{C}{2}$+sin$\frac{A}{2}$sin$\frac{C}{2}$,
即有cos$\frac{A}{2}$cos$\frac{C}{2}$=3sin$\frac{A}{2}$sin$\frac{C}{2}$,
则tan$\frac{A}{2}$tan$\frac{C}{2}$=$\frac{1}{3}$,
则$\frac{tanA}{2}$•$\frac{tanC}{2}$=$\frac{tan\frac{A}{2}}{1-ta{n}^{2}\frac{A}{2}}$•$\frac{tan\frac{C}{2}}{1-ta{n}^{2}\frac{C}{2}}$=$\frac{tan\frac{A}{2}tan\frac{C}{2}}{1+ta{n}^{2}\frac{A}{2}ta{n}^{2}\frac{C}{2}-(ta{n}^{2}\frac{A}{2}+ta{n}^{2}\frac{C}{2})}$
≥$\frac{\frac{1}{3}}{\frac{10}{9}-2×\frac{1}{3}}$=$\frac{3}{4}$,
由2b=a+c≥2$\sqrt{ac}$,
可得b2≥ac,
由余弦定理可得,cosB=$\frac{{a}^{2}+{c}^{2}-{b}^{2}}{2ac}$=$\frac{(a+c)^{2}-2ac-{b}^{2}}{2ac}$
=$\frac{3{b}^{2}}{2ac}$-1≥$\frac{3}{2}$-1=$\frac{1}{2}$,
即有0<B≤$\frac{π}{3}$,
即有tanB≤$\sqrt{3}$,
则($\frac{tanB}{2}$)2$≤\frac{3}{4}$,
故$\frac{tanA}{2}$•$\frac{tanC}{2}$≥($\frac{tanB}{2}$)2成立.
点评 本题主要考查正弦定理和余弦定理的运用,同时考查等差数列的性质,三角函数的恒等变换和基本不等式的运用,属于中档题.
A. | ∅ | B. | S | C. | T | D. | {0,1} |
A. | 2$\sqrt{2}$m | B. | 2$\sqrt{3}$m | C. | 4 m | D. | 6 m |
(Ⅰ)根据频率分布直方图估计小区平均每户居民的平均损失
表一:
经济损失4000元以下 | 经济损失4000元以上 | 合计 | |
捐款超过500元 | 30 | ||
捐款低于500元 | 6 | ||
合计 |
(Ⅲ)台风造成了小区多户居民门窗损坏,若小区所有居民的门窗均由李师傅和张师傅两人进行维修,李师傅每天早上在7:00到8:00之间的任意时刻来到小区,张师傅每天早上在7:30到8:30分之间的任意时刻来到小区,求连续3天内,有2天李师傅比张师傅早到小区的概率.
附:临界值表
k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
P(K2≥k0) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |