题目内容

【题目】数列{an}共有5项,其中a1=0,a5=2,且|ai+1﹣ai|=1,i=1,2,3,4,则满足条件的不同数列的个数为(  )
A.3
B.4
C.5
D.6

【答案】B
【解析】设bi=ai+1﹣ai , i=1,2,3,4,
∵|ai+1﹣ai|=1,∴|bi|=1,解得bi=1或﹣1,
由a5=(a5﹣a4)+(a4﹣a3)+(a3﹣a2)+(a2﹣a1)=b4+b3+b2+b1=2,
知bi(i=1,2,3,4)共有3个1,1个﹣1.
这种组合共有=4个,
故选:B.
设bi=ai+1﹣ai , i=1,2,3,4,由于|ai+1﹣ai|=1,可得bi=1或﹣1,再利用a5=(a5﹣a4)+(a4﹣a3)+(a3﹣a2)+(a2﹣a1)=b4+b3+b2+b1=2,可知bi(i=1,2,3,4)共有3个1,1个﹣1.即可得出.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网