题目内容
已知椭圆的方程为,点分别为其左、右顶点,点分别为其左、右焦点,以点为圆心,为半径作圆;以点为圆心,为半径作圆;若直线被圆和圆截得的弦长之比为;
(1)求椭圆的离心率;
(2)己知,问是否存在点,使得过点有无数条直线被圆和圆截得的弦长之比为;若存在,请求出所有的点坐标;若不存在,请说明理由.
解:(1)由,得直线的倾斜角为,
则点到直线的距离,
故直线被圆截得的弦长为,
直线被圆截得的弦长为, (3分)
据题意有:,即, (5分)
化简得:,
解得:或,又椭圆的离心率;
故椭圆的离心率为.(7分)
(2)假设存在,设点坐标为,过点的直线为;
当直线的斜率不存在时,直线不能被两圆同时所截;
故可设直线的方程为,
则点到直线的距离,
由(1)有,得=,
故直线被圆截得的弦长为, (9分)
则点到直线的距离,
,故直线被圆截得的弦长为, (11分)
据题意有:,即有,整理得,
即,两边平方整理成关于的一元二次方程得
, (13分)
关于的方程有无穷多解,
故有:,
故所求点坐标为(-1,0)或(-49,0). (16分)
(注设过P点的直线为后求得P点坐标同样得分)
解析
练习册系列答案
相关题目
在极坐标系中,圆的圆心的极坐标为( )
A. | B. | C. | D. |