题目内容

【题目】李冶(1192﹣1279),真定栾城(今属河北石家庄市)人,金元时期的数学家、诗人、晚年在封龙山隐居讲学,数学著作多部,其中《益古演段》主要研究平面图形问题:求圆的直径,正方形的边长等,其中一问:现有正方形方田一块,内部有一个圆形水池,其中水池的边缘与方田四边之间的面积为13.75亩,若方田的四边到水池的最近距离均为二十步,则圆池直径和方田的边长分别是(注:240平方步为1亩,圆周率按3近似计算)(
A.10步、50步
B.20步、60步
C.30步、70步
D.40步、80步

【答案】B
【解析】解:由题意,设圆池直径为m,方田边长为40步+m. 方田面积减去水池面积为13.75亩,
∴(40+m)2 =13.75×240.
解得:m=20.
即圆池直径20步
那么:方田边长为40步+20步=60步.
故选B.
根据水池的边缘与方田四边之间的面积为13.75亩,即方田面积减去水池面积为13.75亩,方田的四边到水池的最近距离均为二十步,设圆池直径为m,方田边长为40步+m.从而建立关系求解即可.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网