题目内容

【题目】已知O为坐标原点,,直线AGBG相交于点G,且它们的斜率之积为.记点G的轨迹为曲线C.

1)若射线与曲线C交于点D,且E为曲线C的最高点,证明:.

2)直线与曲线C交于MN两点,直线AMANy轴分别交于PQ两点.试问在x轴上是否存在定点T,使得以PQ为直径的圆恒过点T?若存在,求出T的坐标;若不存在,请说明理由.

【答案】1)证明见解析; 2)存在定点,使得以PQ为直径的圆恒过点T.

【解析】

1)设点,根据,求得点的轨迹方程为,联立方程组,解答坐标,结合斜率公式,即可求解.

2)设,则,解得,,假设顶点T,使得PQ为直径的圆恒过点T,则,求得,即可得到结论.

1)设点,因为,即

整理得点的轨迹方程为

联立方程组,解得

所以,所以.

2)设,则

所以直线AM的方程为,令,解得,

同理可得,

假设定点T,使得PQ为直径的圆恒过点T,则,

又由,可得,所以

即在x轴上存在定点,使得以PQ为直径的圆恒过点T.

练习册系列答案
相关题目

【题目】冠状病毒是一个大型病毒家族,已知可引起感冒以及中东呼吸综合征(MERS)和严重急性呼吸综合征(SARS)等较严重疾病.而今年出现在湖北武汉的新型冠状病毒(nCoV)是以前从未在人体中发现的冠状病毒新毒株.人感染了新型冠状病毒后常见体征有呼吸道症状发热咳嗽气促和呼吸困难等.在较严重病例中,感染可导致肺炎严重急性呼吸综合征肾衰竭,甚至死亡.某医院为筛查冠状病毒,需要检验血液是否为阳性,现有份血液样本,有以下两种检验方式:

方式一:逐份检验,则需要检验n.

方式二:混合检验,将其中k≥2)份血液样本分别取样混合在一起检验.若检验结果为阴性,这k份的血液全为阴性,因而这k份血液样本只要检验一次就够了,如果检验结果为阳性,为了明确这k份血液究竟哪几份为阳性,就要对这k份再逐份检验,此时这k份血液的检验次数总共为k+1.

假设在接受检验的血液样本中,每份样本的检验结果是阳性还是阴性都是独立的,且每份样本是阳性结果的概率为p(0<p<1).现取其中k≥2)份血液样本,记采用逐份检验,方式,样本需要检验的总次数为,采用混合检验方式,样本需要检验的总次数为.

1)若,试求p关于k的函数关系式p=f(k).

2)若p与干扰素计量相关,其中2)是不同的正实数,满足x1=1.

(i)求证:数列为等比数列;

(ii)时采用混合检验方式可以使得样本需要检验的总次数的期望值比逐份检验的总次数的期望值更少,求k的最大值.

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网