题目内容
如图,F是椭圆的右焦点,以点F为圆心的圆过原点O和椭圆的右顶点,设P是椭圆上的动点,P到椭圆两焦点的距离之和等于4.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240354125932277.jpg)
(1)求椭圆和圆的标准方程;
(2)设直线l的方程为x=4,PM⊥l,垂足为M,是否存在点P,使得△FPM为等腰三角形?若存在,求出点P的坐标;若不存在,请说明理由.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240354125932277.jpg)
(1)求椭圆和圆的标准方程;
(2)设直线l的方程为x=4,PM⊥l,垂足为M,是否存在点P,使得△FPM为等腰三角形?若存在,求出点P的坐标;若不存在,请说明理由.
(1)
+
=1 (x-1)2+y2=1
(2) 存在点P
或
,使得△FPM为等腰三角形
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035412608433.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035412624475.png)
(2) 存在点P
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035412640922.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035412655929.png)
解:(1)由题意,设椭圆的标准方程为
+
=1,由已知可得2a=4,a=2c,解得a=2,c=1,b2=a2-c2=3.
∴椭圆的标准方程为
+
=1,圆的标准方程为(x-1)2+y2=1.
(2)设P(x,y),则M(4,y),F(1,0),-2≤x≤2,
∵P(x,y)在椭圆上,∴
+
=1,
∴y2=3-
x2.
∴|PF|2=(x-1)2+y2=(x-1)2+3-
x2=
(x-4)2,
|PM|2=|x-4|2,|FM|2=32+y2=12-
x2.
①若|PF|=|FM|,则
(x-4)2=12-
x2,解得x=-2或x=4(舍去),x=-2时,P(-2,0),此时P,F,M三点共线,不合题意.∴|PF|≠|FM|;
②若|PM|=|PF|,则(x-4)2=
(x-4)2,解得x=4,不合题意;
③若|PM|=|FM|,则(x-4)2=12-
x2,解得x=4(舍去)或x=
,x=
时y=±
,
∴P
.
综上可得,存在点P
或
,使得△FPM为等腰三角形.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035412686444.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035412702476.png)
∴椭圆的标准方程为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035412608433.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035412624475.png)
(2)设P(x,y),则M(4,y),F(1,0),-2≤x≤2,
∵P(x,y)在椭圆上,∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035412608433.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035412624475.png)
∴y2=3-
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035412764385.png)
∴|PF|2=(x-1)2+y2=(x-1)2+3-
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035412764385.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035412796303.png)
|PM|2=|x-4|2,|FM|2=32+y2=12-
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035412764385.png)
①若|PF|=|FM|,则
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035412796303.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035412764385.png)
②若|PM|=|PF|,则(x-4)2=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035412796303.png)
③若|PM|=|FM|,则(x-4)2=12-
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035412764385.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035412889347.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035412889347.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035412920535.png)
∴P
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035412936941.png)
综上可得,存在点P
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035412640922.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035412655929.png)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目