题目内容
【题目】设函数.
(1)当(为自然对数的底数)时,求的最小值;
(2)讨论函数零点的个数;
(3)若对任意恒成立,求的取值范围.
【答案】(1)2;(2)当时,函数无零点;当或时,函数有且仅有一个零点;当时,函数有两个零点;(3).
【解析】
试题(1)当m=e时,>0,由此利用导数性质能求出f(x)的极小值;(2)由,得,令,x>0,m∈R,则h(1)=,
h′(x)=1-x2=(1+x)(1-x),由此利用导数性质能求出函数g(x)=f′(x)-零点的个数;(3)(理)当b>a>0时,f′(x)<1在(0,+∞)上恒成立,由此能求出m的取值范围
试题解析:(1)由题设,当时,
易得函数的定义域为
当时,,此时在上单调递减;
当时,,此时在上单调递增;
当时,取得极小值
的极小值为2
(2)函数
令,得
设
当时,,此时在上单调递增;
当时,,此时在上单调递减;
所以是的唯一极值点,且是极大值点,因此x=1也是的最大值点,
的最大值为
又,结合y=的图像(如图),可知
①当时,函数无零点;
②当时,函数有且仅有一个零点;
③当时,函数有两个零点;
④时,函数有且只有一个零点;
综上所述,当时,函数无零点;当或时,函数有且仅有一个零点;当时,函数有两个零点.
(3)对任意恒成立,等价于恒成立
设,在上单调递减
在恒成立
恒成立
(对,仅在时成立),的取值范围是
练习册系列答案
相关题目