题目内容
【题目】某公园欲将一块空地规划成如图所示的区域,其中在边长为20米的正方形内种植经红色郁金香,在正方形的剩余部分(即四个直角三角形内)种植黄色郁金香.现要在以为边长的矩形内种植绿色草坪,要求绿色草坪的面积等于黄色郁金香的面积.设,米.
(1)求与之间的函数关系式;
(2)求的最大值.
【答案】(1),其中(2)米
【解析】
(1)利用已知条件将黄色郁金香和绿色草坪的面积表示出来,然后根据面积相等,得到与之间的函数关系式,注意定义域;
(2)根据,用换元法并构造新函数完成最大值的求解.
解:(1)在中,,则,
同理,在中,,则,
所以.
因为在矩形内种植与黄花面积相等的草坪,
设矩形的面积为,则,
所以,
所以,其中.
(2)令,则.
因为,所以,
所以,因为在上单调递增,
所以,
答:的最大值为米.
练习册系列答案
相关题目