题目内容
【题目】已知椭圆的左焦点为,是椭圆上关于原点对称的两个动点,当点的坐标为时,的周长恰为.
(1)求椭圆的方程;
(2)过点作直线交椭圆于两点,且 ,求面积的取值范围.
【答案】(1)(2)
【解析】
(1)求出AB,得到a,然后求解b,即可得到椭圆方程;(2)当直线AB的斜率不存在时,求解三角形面积,设直线CD的方程为y=k(x+2)(k≠0).由消去y整理得:(1+2k2)x2+8k2x+8k2﹣8=0,△>0,设C(x1,y1),D(x2,y2),利用弦长公式求解CD,然后求解三角形面积,推出范围即可.
(1)当点的坐标为时,,所以.
由对称性,,
所以,得
将点代入椭圆方程 中,解得,
所以椭圆方程为.
(2)当直线的斜率不存在时,,
此时.
当直线的斜率存在时,设直线的方程为.
由消去整理得:. 显然,
设,则
故
.
因为 ,所以,
所以点到直线的距离即为点到直线的距离,
所以
,
因为,所以,
所以.综上,.
【题目】眼保健操是一种眼睛的保健体操,主要是通过按摩眼部穴位,调整眼及头部的血液循环,调节肌肉,改善眼的疲劳,达到预防近视等眼部疾病的目的.某学校为了调查推广眼保健操对改善学生视力的效果,在应届高三的全体800名学生中随机抽取了100名学生进行视力检查,并得到如图的频率分布直方图.
(1)若直方图中后三组的频数成等差数列,试估计全年级视力在5.0以上的人数;
(2)为了研究学生的视力与眼保健操是否有关系,对年级不做眼保健操和坚持做眼保健操的学生进行了调查,得到下表中数据,根据表中的数据,能否在犯错的概率不超过0.005的前提下认为视力与眼保健操有关系?
(3)在(2)中调查的100名学生中,按照分层抽样在不近视的学生中抽取8人,进一步调查他们良好的护眼习惯,在这8人中任取2人,记坚持做眼保健操的学生人数为X,求X的分布列和数学期望.
附:
0.10 | 0.05 | 0.025 | 0.010 | 0.005 | |
k | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 |