题目内容
【题目】已知四棱锥,底面ABCD是边长为1的正方形,,平面平面ABCD,当点C到平面ABE的距离最大时,该四棱锥的体积为( )
A.B.C.D.1
【答案】B
【解析】
过点E作,垂足为H,过H作,垂足为F,连接EF.因为平面ABE,所以点C到平面ABE的距离等于点H到平面ABE的距离.设,将表示成关于的函数,再求函数的最值,即可得答案.
过点E作,垂足为H,过H作,垂足为F,连接EF.
因为平面平面ABCD,所以平面ABCD,
所以.
因为底面ABCD是边长为1的正方形,,所以.
因为平面ABE,所以点C到平面ABE的距离等于点H到平面ABE的距离.
易证平面平面ABE,
所以点H到平面ABE的距离,即为H到EF的距离.
不妨设,则,.
因为,所以,
所以,当时,等号成立.
此时EH与ED重合,所以,.
故选:B.
练习册系列答案
相关题目