题目内容
已知函数
,
.
(1)求证:不论
为何实数
在
上为增函数;
(2)若
为奇函数,求
的值;
(3)在(2)的条件下,求
在区间
上的最小值.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054102800767.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054102816520.png)
(1)求证:不论
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054102831283.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054102847447.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054102863516.png)
(2)若
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054102847447.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054102831283.png)
(3)在(2)的条件下,求
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054102847447.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054102941404.png)
(1)详见解析
(2)![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054102956453.png)
(3)
在区间
上的最小值为
.
(2)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054102956453.png)
(3)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054102847447.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054102941404.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054103003336.png)
(1)
的定义域为R, 任取
,
则
=
.
,∴
.
∴
,即
.
所以不论
为何实数
总为增函数.
(2)
在
上为奇函数,
∴
,即
.
解得
.
(3)由(2)知,
,
由(1)知,
为增函数,
∴
在区间
上的最小值为
.
∵
,
∴
在区间
上的最小值为
.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054103019487.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054103034429.png)
则
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240541030501177.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054103065839.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054103159476.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054103175925.png)
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054103190741.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054103206679.png)
所以不论
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054102831283.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054102847447.png)
(2)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054103019487.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054103284433.png)
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054103299481.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054103315629.png)
解得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054102956453.png)
(3)由(2)知,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054103362760.png)
由(1)知,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054102847447.png)
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054102847447.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054102941404.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054103440411.png)
∵
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054103455775.png)
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054102847447.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054102941404.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054103003336.png)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目